DART  6.6.2
Helpers.hpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2011-2018, The DART development contributors
3  * All rights reserved.
4  *
5  * The list of contributors can be found at:
6  * https://github.com/dartsim/dart/blob/master/LICENSE
7  *
8  * This file is provided under the following "BSD-style" License:
9  * Redistribution and use in source and binary forms, with or
10  * without modification, are permitted provided that the following
11  * conditions are met:
12  * * Redistributions of source code must retain the above copyright
13  * notice, this list of conditions and the following disclaimer.
14  * * Redistributions in binary form must reproduce the above
15  * copyright notice, this list of conditions and the following
16  * disclaimer in the documentation and/or other materials provided
17  * with the distribution.
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19  * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
23  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
26  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
27  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
29  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #ifndef DART_MATH_HELPERS_HPP_
34 #define DART_MATH_HELPERS_HPP_
35 
36 // Standard Libraries
37 #include <cfloat>
38 #include <climits>
39 #include <cmath>
40 #include <cstdlib>
41 #include <ctime>
42 #include <iomanip>
43 #include <iostream>
44 
45 // External Libraries
46 #include <Eigen/Dense>
47 // Local Headers
48 #include "dart/math/Constants.hpp"
49 #include "dart/math/MathTypes.hpp"
50 
51 namespace dart {
52 namespace math {
53 
54 //==============================================================================
55 template <typename T>
56 constexpr T toRadian(const T& degree)
57 {
58  return degree * constants<T>::pi() / 180.0;
59 }
60 
61 //==============================================================================
62 template <typename T>
63 constexpr T toDegree(const T& radian)
64 {
65  return radian * 180.0 / constants<T>::pi();
66 }
67 
70 const Eigen::Matrix2d CR((Eigen::Matrix2d() << 0.0, -1.0, 1.0, 0.0).finished());
71 
72 inline int delta(int _i, int _j) {
73  if (_i == _j)
74  return 1;
75  return 0;
76 }
77 
78 template <typename T> inline constexpr
79 int sign(T x, std::false_type)
80 {
81  return static_cast<T>(0) < x;
82 }
83 
84 template <typename T> inline constexpr
85 int sign(T x, std::true_type)
86 {
87  return (static_cast<T>(0) < x) - (x < static_cast<T>(0));
88 }
89 
90 template <typename T> inline constexpr
91 int sign(T x)
92 {
93  return sign(x, std::is_signed<T>());
94 }
95 
96 inline double sqr(double _x) {
97  return _x*_x;
98 }
99 
100 inline double Tsinc(double _theta) {
101  return 0.5-sqrt(_theta)/48;
102 }
103 
104 inline bool isZero(double _theta) {
105  return (std::abs(_theta) < 1e-6);
106 }
107 
108 inline double asinh(double _X) {
109  return log(_X + sqrt(_X * _X + 1));
110 }
111 
112 inline double acosh(double _X) {
113  return log(_X + sqrt(_X * _X - 1));
114 }
115 
116 inline double atanh(double _X) {
117  return log((1 + _X)/(1 - _X))/ 2;
118 }
119 
120 inline double asech(double _X) {
121  return log((sqrt(-_X * _X + 1) + 1) / _X);
122 }
123 
124 inline double acosech(double _X) {
125  return log((sign(_X) * sqrt(_X * _X + 1) +1) / _X);
126 }
127 
128 inline double acotanh(double _X) {
129  return log((_X + 1) / (_X - 1)) / 2;
130 }
131 
132 inline double round(double _x) {
133  return floor(_x + 0.5);
134 }
135 
136 inline double round2(double _x) {
137  int gintx = static_cast<int>(std::floor(_x));
138  if (_x - gintx < 0.5)
139  return static_cast<double>(gintx);
140  else
141  return static_cast<double>(gintx + 1.0);
142 }
143 
144 template <typename T>
145 inline T clip(const T& val, const T& lower, const T& upper)
146 {
147  return std::max(lower, std::min(val, upper));
148 }
149 
150 template <typename DerivedA, typename DerivedB>
151 inline typename DerivedA::PlainObject clip(
152  const Eigen::MatrixBase<DerivedA>& val,
153  const Eigen::MatrixBase<DerivedB>& lower,
154  const Eigen::MatrixBase<DerivedB>& upper)
155 {
156  return lower.cwiseMax(val.cwiseMin(upper));
157 }
158 
159 inline bool isEqual(double _x, double _y) {
160  return (std::abs(_x - _y) < 1e-6);
161 }
162 
163 // check if it is an integer
164 inline bool isInt(double _x) {
165  if (isEqual(round(_x), _x))
166  return true;
167  return false;
168 }
169 
171 inline bool isNan(double _v) {
172 #ifdef _WIN32
173  return _isnan(_v) != 0;
174 #else
175  return std::isnan(_v);
176 #endif
177 }
178 
180 inline bool isNan(const Eigen::MatrixXd& _m) {
181  for (int i = 0; i < _m.rows(); ++i)
182  for (int j = 0; j < _m.cols(); ++j)
183  if (isNan(_m(i, j)))
184  return true;
185 
186  return false;
187 }
188 
191 inline bool isInf(double _v) {
192 #ifdef _WIN32
193  return !_finite(_v);
194 #else
195  return std::isinf(_v);
196 #endif
197 }
198 
201 inline bool isInf(const Eigen::MatrixXd& _m) {
202  for (int i = 0; i < _m.rows(); ++i)
203  for (int j = 0; j < _m.cols(); ++j)
204  if (isInf(_m(i, j)))
205  return true;
206 
207  return false;
208 }
209 
211 inline bool isSymmetric(const Eigen::MatrixXd& _m, double _tol = 1e-6) {
212  std::size_t rows = _m.rows();
213  std::size_t cols = _m.cols();
214 
215  if (rows != cols)
216  return false;
217 
218  for (std::size_t i = 0; i < rows; ++i) {
219  for (std::size_t j = i + 1; j < cols; ++j) {
220  if (std::abs(_m(i, j) - _m(j, i)) > _tol) {
221  std::cout << "A: " << std::endl;
222  for (std::size_t k = 0; k < rows; ++k) {
223  for (std::size_t l = 0; l < cols; ++l)
224  std::cout << std::setprecision(4) << _m(k, l) << " ";
225  std::cout << std::endl;
226  }
227 
228  std::cout << "A(" << i << ", " << j << "): " << _m(i, j) << std::endl;
229  std::cout << "A(" << j << ", " << i << "): " << _m(i, j) << std::endl;
230  return false;
231  }
232  }
233  }
234 
235  return true;
236 }
237 
238 inline unsigned seedRand() {
239  time_t now = time(0);
240  unsigned char* p = reinterpret_cast<unsigned char*>(&now);
241  unsigned seed = 0;
242  std::size_t i;
243 
244  for (i = 0; i < sizeof(now); i++)
245  seed = seed * (UCHAR_MAX + 2U) + p[i];
246 
247  srand(seed);
248  return seed;
249 }
250 
251 inline double random(double _min, double _max) {
252  return _min + ((static_cast<double>(rand()) / (RAND_MAX + 1.0))
253  * (_max - _min));
254 }
255 
256 template<int N>
257 Eigen::Matrix<double, N, 1> randomVector(double _min, double _max)
258 {
259  Eigen::Matrix<double, N, 1> v;
260  for(std::size_t i=0; i<N; ++i)
261  v[i] = random(_min, _max);
262 
263  return v;
264 }
265 
266 template<int N>
267 Eigen::Matrix<double, N, 1> randomVector(double _limit)
268 {
269  return randomVector<N>(-std::abs(_limit), std::abs(_limit));
270 }
271 
272 //==============================================================================
273 inline Eigen::VectorXd randomVectorXd(std::size_t size, double min, double max)
274 {
275  Eigen::VectorXd v = Eigen::VectorXd::Zero(size);
276 
277  for (std::size_t i = 0; i < size; ++i)
278  v[i] = random(min, max);
279 
280  return v;
281 }
282 
283 //==============================================================================
284 inline Eigen::VectorXd randomVectorXd(std::size_t size, double limit)
285 {
286  return randomVectorXd(size, -std::abs(limit), std::abs(limit));
287 }
288 
289 namespace suffixes {
290 
291 //==============================================================================
292 constexpr double operator"" _pi(long double x)
293 {
294  return x * constants<double>::pi();
295 }
296 
297 //==============================================================================
298 constexpr double operator"" _pi(unsigned long long int x)
299 {
300  return operator"" _pi(static_cast<long double>(x));
301 }
302 
303 //==============================================================================
304 constexpr double operator"" _rad(long double angle)
305 {
306  return angle;
307 }
308 
309 //==============================================================================
310 constexpr double operator"" _rad(unsigned long long int angle)
311 {
312  return operator"" _rad(static_cast<long double>(angle));
313 }
314 
315 //==============================================================================
316 constexpr double operator"" _deg(long double angle)
317 {
318  return toRadian(angle);
319 }
320 
321 //==============================================================================
322 constexpr double operator"" _deg(unsigned long long int angle)
323 {
324  return operator"" _deg(static_cast<long double>(angle));
325 }
326 
327 } // namespace suffixes
328 
329 } // namespace math
330 
331 namespace Color
332 {
333 
334 inline Eigen::Vector4d Red(double alpha)
335 {
336  return Eigen::Vector4d(0.9, 0.1, 0.1, alpha);
337 }
338 
339 inline Eigen::Vector3d Red()
340 {
341  return Eigen::Vector3d(0.9, 0.1, 0.1);
342 }
343 
344 inline Eigen::Vector3d Fuchsia()
345 {
346  return Eigen::Vector3d(1.0, 0.0, 0.5);
347 }
348 
349 inline Eigen::Vector4d Fuchsia(double alpha)
350 {
351  return Eigen::Vector4d(1.0, 0.0, 0.5, alpha);
352 }
353 
354 inline Eigen::Vector4d Orange(double alpha)
355 {
356  return Eigen::Vector4d(1.0, 0.63, 0.0, alpha);
357 }
358 
359 inline Eigen::Vector3d Orange()
360 {
361  return Eigen::Vector3d(1.0, 0.63, 0.0);
362 }
363 
364 inline Eigen::Vector4d Green(double alpha)
365 {
366  return Eigen::Vector4d(0.1, 0.9, 0.1, alpha);
367 }
368 
369 inline Eigen::Vector3d Green()
370 {
371  return Eigen::Vector3d(0.1, 0.9, 0.1);
372 }
373 
374 inline Eigen::Vector4d Blue(double alpha)
375 {
376  return Eigen::Vector4d(0.1, 0.1, 0.9, alpha);
377 }
378 
379 inline Eigen::Vector3d Blue()
380 {
381  return Eigen::Vector3d(0.1, 0.1, 0.9);
382 }
383 
384 inline Eigen::Vector4d White(double alpha)
385 {
386  return Eigen::Vector4d(1.0, 1.0, 1.0, alpha);
387 }
388 
389 inline Eigen::Vector3d White()
390 {
391  return Eigen::Vector3d(1.0, 1.0, 1.0);
392 }
393 
394 inline Eigen::Vector4d Black(double alpha)
395 {
396  return Eigen::Vector4d(0.05, 0.05, 0.05, alpha);
397 }
398 
399 inline Eigen::Vector3d Black()
400 {
401  return Eigen::Vector3d(0.05, 0.05, 0.05);
402 }
403 
404 inline Eigen::Vector4d Gray(double alpha)
405 {
406  return Eigen::Vector4d(0.6, 0.6, 0.6, alpha);
407 }
408 
409 inline Eigen::Vector3d Gray()
410 {
411  return Eigen::Vector3d(0.6, 0.6, 0.6);
412 }
413 
414 inline Eigen::Vector4d Random(double alpha)
415 {
416  return Eigen::Vector4d(math::random(0.0, 1.0),
417  math::random(0.0, 1.0),
418  math::random(0.0, 1.0),
419  alpha);
420 }
421 
422 inline Eigen::Vector3d Random()
423 {
424  return Eigen::Vector3d(math::random(0.0, 1.0),
425  math::random(0.0, 1.0),
426  math::random(0.0, 1.0));
427 }
428 
429 } // namespace Color
430 
431 } // namespace dart
432 
433 #endif // DART_MATH_HELPERS_HPP_
Eigen::Vector4d Gray(double alpha)
Definition: Helpers.hpp:404
Eigen::Vector4d Green(double alpha)
Definition: Helpers.hpp:364
Eigen::Vector4d Red(double alpha)
Definition: Helpers.hpp:334
Eigen::Vector4d Blue(double alpha)
Definition: Helpers.hpp:374
Eigen::Vector3d Fuchsia()
Definition: Helpers.hpp:344
Eigen::Vector4d White(double alpha)
Definition: Helpers.hpp:384
Eigen::Vector4d Orange(double alpha)
Definition: Helpers.hpp:354
Eigen::Vector4d Random(double alpha)
Definition: Helpers.hpp:414
Eigen::Vector4d Black(double alpha)
Definition: Helpers.hpp:394
bool isZero(double _theta)
Definition: Helpers.hpp:104
unsigned seedRand()
Definition: Helpers.hpp:238
T clip(const T &val, const T &lower, const T &upper)
Definition: Helpers.hpp:145
constexpr T toDegree(const T &radian)
Definition: Helpers.hpp:63
bool isEqual(double _x, double _y)
Definition: Helpers.hpp:159
double acosech(double _X)
Definition: Helpers.hpp:124
Eigen::Matrix< double, N, 1 > randomVector(double _min, double _max)
Definition: Helpers.hpp:257
double acosh(double _X)
Definition: Helpers.hpp:112
double atanh(double _X)
Definition: Helpers.hpp:116
double round2(double _x)
Definition: Helpers.hpp:136
constexpr int sign(T x, std::false_type)
Definition: Helpers.hpp:79
Eigen::VectorXd randomVectorXd(std::size_t size, double min, double max)
Definition: Helpers.hpp:273
double Tsinc(double _theta)
Definition: Helpers.hpp:100
const Eigen::Matrix2d CR((Eigen::Matrix2d()<< 0.0, -1.0, 1.0, 0.0).finished())
a cross b = (CR*a) dot b const Matd CR(2,2,0.0,-1.0,1.0,0.0);
constexpr T toRadian(const T &degree)
Definition: Helpers.hpp:56
double round(double _x)
Definition: Helpers.hpp:132
double random(double _min, double _max)
Definition: Helpers.hpp:251
double sqr(double _x)
Definition: Helpers.hpp:96
bool isInf(double _v)
Returns whether _v is an infinity value (either positive infinity or negative infinity).
Definition: Helpers.hpp:191
bool isSymmetric(const Eigen::MatrixXd &_m, double _tol=1e-6)
Returns whether _m is symmetric or not.
Definition: Helpers.hpp:211
double asech(double _X)
Definition: Helpers.hpp:120
double acotanh(double _X)
Definition: Helpers.hpp:128
double asinh(double _X)
Definition: Helpers.hpp:108
int delta(int _i, int _j)
Definition: Helpers.hpp:72
bool isInt(double _x)
Definition: Helpers.hpp:164
bool isNan(double _v)
Returns whether _v is a NaN (Not-A-Number) value.
Definition: Helpers.hpp:171
Definition: BulletCollisionDetector.cpp:63
static constexpr T pi()
Definition: Constants.hpp:44