DART 6.10.1
|
Namespaces | |
namespace | detail |
namespace | suffixes |
Classes | |
class | BoundingBox |
struct | constants |
struct | HullAngle |
struct | MapsToManifoldPoint |
class | Random |
struct | RealVectorSpace |
struct | SE3Space |
struct | SO3Space |
Typedefs | |
using | NullSpace = RealVectorSpace< 0u > |
using | R1Space = RealVectorSpace< 1u > |
using | R2Space = RealVectorSpace< 2u > |
using | R3Space = RealVectorSpace< 3u > |
using | constantsf = constants< float > |
using | constantsd = constants< double > |
typedef std::vector< Eigen::Vector3d > | SupportGeometry |
typedef common::aligned_vector< Eigen::Vector2d > | SupportPolygon |
using | Inertia = Eigen::Matrix6d |
using | LinearJacobian = Eigen::Matrix< double, 3, Eigen::Dynamic > |
using | AngularJacobian = Eigen::Matrix< double, 3, Eigen::Dynamic > |
using | Jacobian = Eigen::Matrix< double, 6, Eigen::Dynamic > |
Enumerations | |
enum | AxisType { AXIS_X = 0 , AXIS_Y = 1 , AXIS_Z = 2 } |
enum | IntersectionResult { INTERSECTING = 0 , PARALLEL , BEYOND_ENDPOINTS } |
Intersection_t is returned by the computeIntersection() function to indicate whether there was a valid intersection between the two line segments. More... | |
Functions | |
template<typename SpaceT > | |
SpaceT::Matrix | inverse (const typename SpaceT::Matrix &mat) |
template<typename SpaceT > | |
SpaceT::EuclideanPoint | toEuclideanPoint (const typename SpaceT::Point &point) |
template<typename SpaceT > | |
SpaceT::Point | toManifoldPoint (const typename SpaceT::EuclideanPoint &point) |
template<typename SpaceT > | |
SpaceT::Point | integratePosition (const typename SpaceT::Point &pos, const typename SpaceT::Vector &vel, double dt) |
template<typename SpaceT > | |
SpaceT::Vector | integrateVelocity (const typename SpaceT::Vector &vel, const typename SpaceT::Vector &acc, double dt) |
Eigen::Quaterniond | expToQuat (const Eigen::Vector3d &_v) |
Eigen::Vector3d | quatToExp (const Eigen::Quaterniond &_q) |
Eigen::Vector3d | matrixToEulerXYX (const Eigen::Matrix3d &_R) |
get the Euler XYX angle from R | |
Eigen::Vector3d | matrixToEulerXYZ (const Eigen::Matrix3d &_R) |
get the Euler XYZ angle from R | |
Eigen::Vector3d | matrixToEulerZYX (const Eigen::Matrix3d &_R) |
get the Euler ZYX angle from R | |
Eigen::Vector3d | matrixToEulerXZY (const Eigen::Matrix3d &_R) |
get the Euler XZY angle from R | |
Eigen::Vector3d | matrixToEulerYZX (const Eigen::Matrix3d &_R) |
get the Euler YZX angle from R | |
Eigen::Vector3d | matrixToEulerZXY (const Eigen::Matrix3d &_R) |
get the Euler ZXY angle from R | |
Eigen::Vector3d | matrixToEulerYXZ (const Eigen::Matrix3d &_R) |
get the Euler YXZ angle from R | |
Eigen::Matrix3d | quatDeriv (const Eigen::Quaterniond &_q, int _el) |
Eigen::Matrix3d | quatSecondDeriv (const Eigen::Quaterniond &_q, int _el1, int _el2) |
Eigen::Vector3d | rotatePoint (const Eigen::Quaterniond &_q, const Eigen::Vector3d &_pt) |
Eigen::Vector3d | rotatePoint (const Eigen::Quaterniond &_q, double _x, double _y, double _z) |
Eigen::Matrix3d | expMapRot (const Eigen::Vector3d &_expmap) |
Computes the Rotation matrix from a given expmap vector. | |
Eigen::Matrix3d | expMapJac (const Eigen::Vector3d &_expmap) |
Computes the Jacobian of the expmap. | |
Eigen::Matrix3d | expMapJacDot (const Eigen::Vector3d &_expmap, const Eigen::Vector3d &_qdot) |
Computes the time derivative of the expmap Jacobian. | |
Eigen::Matrix3d | expMapJacDeriv (const Eigen::Vector3d &_expmap, int _qi) |
computes the derivative of the Jacobian of the expmap wrt to _qi indexed dof; _qi \( \in \) {0,1,2} | |
Eigen::Vector3d | logMap (const Eigen::Matrix3d &_R) |
Log mapping. | |
Eigen::Vector6d | logMap (const Eigen::Isometry3d &_T) |
Log mapping. | |
Eigen::Vector6d | AdT (const Eigen::Isometry3d &_T, const Eigen::Vector6d &_V) |
Rectify the rotation part so as that it satifies the orthogonality condition. | |
Eigen::Matrix6d | getAdTMatrix (const Eigen::Isometry3d &T) |
Get linear transformation matrix of Adjoint mapping. | |
Eigen::Vector6d | AdR (const Eigen::Isometry3d &_T, const Eigen::Vector6d &_V) |
Fast version of Ad([R 0; 0 1], V) | |
Eigen::Vector6d | AdTAngular (const Eigen::Isometry3d &_T, const Eigen::Vector3d &_w) |
fast version of Ad(T, se3(w, 0)) | |
Eigen::Vector6d | AdTLinear (const Eigen::Isometry3d &_T, const Eigen::Vector3d &_v) |
fast version of Ad(T, se3(0, v)) | |
Eigen::Vector6d | AdInvT (const Eigen::Isometry3d &_T, const Eigen::Vector6d &_V) |
fast version of Ad(Inv(T), V) | |
Eigen::Vector6d | AdInvRLinear (const Eigen::Isometry3d &_T, const Eigen::Vector3d &_v) |
Fast version of Ad(Inv([R 0; 0 1]), se3(0, v)) | |
Eigen::Vector6d | ad (const Eigen::Vector6d &_X, const Eigen::Vector6d &_Y) |
adjoint mapping | |
Eigen::Vector6d | dAdT (const Eigen::Isometry3d &_T, const Eigen::Vector6d &_F) |
dual adjoint mapping | |
Eigen::Vector6d | dAdInvT (const Eigen::Isometry3d &_T, const Eigen::Vector6d &_F) |
fast version of dAd(Inv(T), F) | |
Eigen::Vector6d | dAdInvR (const Eigen::Isometry3d &_T, const Eigen::Vector6d &_F) |
fast version of dAd(Inv([R 0; 0 1]), F) | |
Eigen::Matrix3d | eulerXYXToMatrix (const Eigen::Vector3d &_angle) |
Given Euler XYX angles, return a 3x3 rotation matrix, which is equivalent to RotX(angle(0)) * RotY(angle(1)) * RotX(angle(2)). | |
Eigen::Matrix3d | eulerXYZToMatrix (const Eigen::Vector3d &_angle) |
Given EulerXYZ angles, return a 3x3 rotation matrix, which is equivalent to RotX(angle(0)) * RotY(angle(1)) * RotZ(angle(2)). | |
Eigen::Matrix3d | eulerXZXToMatrix (const Eigen::Vector3d &_angle) |
Given EulerXZX angles, return a 3x3 rotation matrix, which is equivalent to RotX(angle(0)) * RotZ(angle(1)) * RotX(angle(2)). | |
Eigen::Matrix3d | eulerXZYToMatrix (const Eigen::Vector3d &_angle) |
Given EulerXZY angles, return a 3x3 rotation matrix, which is equivalent to RotX(angle(0)) * RotZ(angle(1)) * RotY(angle(2)). | |
Eigen::Matrix3d | eulerYXYToMatrix (const Eigen::Vector3d &_angle) |
Given EulerYXY angles, return a 3x3 rotation matrix, which is equivalent to RotY(angle(0)) * RotX(angle(1)) * RotY(angle(2)). | |
Eigen::Matrix3d | eulerYXZToMatrix (const Eigen::Vector3d &_angle) |
Given EulerYXZ angles, return a 3x3 rotation matrix, which is equivalent to RotY(angle(0)) * RotX(angle(1)) * RotZ(angle(2)). | |
Eigen::Matrix3d | eulerYZXToMatrix (const Eigen::Vector3d &_angle) |
Given EulerYZX angles, return a 3x3 rotation matrix, which is equivalent to RotY(angle(0)) * RotZ(angle(1)) * RotX(angle(2)). | |
Eigen::Matrix3d | eulerYZYToMatrix (const Eigen::Vector3d &_angle) |
Given EulerYZY angles, return a 3x3 rotation matrix, which is equivalent to RotY(angle(0)) * RotZ(angle(1)) * RotY(angle(2)). | |
Eigen::Matrix3d | eulerZXYToMatrix (const Eigen::Vector3d &_angle) |
Given EulerZXY angles, return a 3x3 rotation matrix, which is equivalent to RotZ(angle(0)) * RotX(angle(1)) * RotY(angle(2)). | |
Eigen::Matrix3d | eulerZYXToMatrix (const Eigen::Vector3d &_angle) |
Given EulerZYX angles, return a 3x3 rotation matrix, which is equivalent to RotZ(angle(0)) * RotY(angle(1)) * RotX(angle(2)). | |
Eigen::Matrix3d | eulerZXZToMatrix (const Eigen::Vector3d &_angle) |
Given EulerZXZ angles, return a 3x3 rotation matrix, which is equivalent to RotZ(angle(0)) * RotX(angle(1)) * RotZ(angle(2)). | |
Eigen::Matrix3d | eulerZYZToMatrix (const Eigen::Vector3d &_angle) |
Given EulerZYZ angles, return a 3x3 rotation matrix, which is equivalent to RotZ(angle(0)) * RotY(angle(1)) * RotZ(angle(2)). | |
Eigen::Isometry3d | expMap (const Eigen::Vector6d &_S) |
Exponential mapping. | |
Eigen::Isometry3d | expAngular (const Eigen::Vector3d &_s) |
fast version of Exp(se3(s, 0)) | |
Eigen::Vector6d | dad (const Eigen::Vector6d &_s, const Eigen::Vector6d &_t) |
fast version of ad(se3(Eigen_Vec3(0), v), S) | |
Inertia | transformInertia (const Eigen::Isometry3d &_T, const Inertia &_AI) |
Eigen::Matrix3d | parallelAxisTheorem (const Eigen::Matrix3d &_original, const Eigen::Vector3d &_comShift, double _mass) |
Use the Parallel Axis Theorem to compute the moment of inertia of a body whose center of mass has been shifted from the origin. | |
bool | verifyRotation (const Eigen::Matrix3d &_R) |
Check if determinant of _R is equat to 1 and all the elements are not NaN values. | |
bool | verifyTransform (const Eigen::Isometry3d &_T) |
Check if determinant of the rotational part of _T is equat to 1 and all the elements are not NaN values. | |
Eigen::Vector3d | fromSkewSymmetric (const Eigen::Matrix3d &_m) |
Eigen::Matrix3d | makeSkewSymmetric (const Eigen::Vector3d &_v) |
Eigen::Matrix3d | computeRotation (const Eigen::Vector3d &axis, AxisType axisType=AxisType::AXIS_X) |
Compute a rotation matrix from a vector. | |
Eigen::Isometry3d | computeTransform (const Eigen::Vector3d &axis, const Eigen::Vector3d &translation, AxisType axisType=AxisType::AXIS_X) |
Compute a transform from a vector and a position. | |
Eigen::Isometry3d | getFrameOriginAxisZ (const Eigen::Vector3d &_origin, const Eigen::Vector3d &_axisZ) |
Generate frame given origin and z-axis. | |
SupportPolygon | computeSupportPolgyon (const SupportGeometry &_geometry, const Eigen::Vector3d &_axis1=Eigen::Vector3d::UnitX(), const Eigen::Vector3d &_axis2=Eigen::Vector3d::UnitY()) |
Project the support geometry points onto a plane with the given axes and then compute their convex hull, which will take the form of a polgyon. | |
SupportPolygon | computeSupportPolgyon (std::vector< std::size_t > &_originalIndices, const SupportGeometry &_geometry, const Eigen::Vector3d &_axis1=Eigen::Vector3d::UnitX(), const Eigen::Vector3d &_axis2=Eigen::Vector3d::UnitY()) |
Same as computeSupportPolgyon, except you can pass in a std::vector<std::size_t> which will have the same size as the returned SupportPolygon, and each entry will contain the original index of each point in the SupportPolygon. | |
static bool | HullAngleComparison (const HullAngle &a, const HullAngle &b) |
SupportPolygon | computeConvexHull (const SupportPolygon &_points) |
Computes the convex hull of a set of 2D points. | |
Eigen::Vector2d | computeCentroidOfHull (const SupportPolygon &_convexHull) |
Compute the centroid of a polygon, assuming the polygon is a convex hull. | |
static bool | isLeftTurn (const Eigen::Vector2d &p1, const Eigen::Vector2d &p2, const Eigen::Vector2d &p3) |
SupportPolygon | computeConvexHull (std::vector< std::size_t > &_originalIndices, const SupportPolygon &_points) |
Computes the convex hull of a set of 2D points and fills in _originalIndices with the original index of each entry in the returned SupportPolygon. | |
IntersectionResult | computeIntersection (Eigen::Vector2d &_intersectionPoint, const Eigen::Vector2d &a1, const Eigen::Vector2d &a2, const Eigen::Vector2d &b1, const Eigen::Vector2d &b2) |
Compute the intersection between a line segment that goes from a1 -> a2 and a line segment that goes from b1 -> b2. | |
double | cross (const Eigen::Vector2d &_v1, const Eigen::Vector2d &_v2) |
Compute a 2D cross product. | |
bool | isInsideSupportPolygon (const Eigen::Vector2d &_p, const SupportPolygon &_support, bool _includeEdge=true) |
Returns true if the point _p is inside the support polygon. | |
Eigen::Vector2d | computeClosestPointOnLineSegment (const Eigen::Vector2d &_p, const Eigen::Vector2d &_s1, const Eigen::Vector2d &_s2) |
Returns the point which is closest to _p that also lays on the line segment that goes from _s1 -> _s2. | |
Eigen::Vector2d | computeClosestPointOnSupportPolygon (const Eigen::Vector2d &_p, const SupportPolygon &_support) |
Returns the point which is closest to _p that also lays on the edge of the support polygon. | |
Eigen::Vector2d | computeClosestPointOnSupportPolygon (std::size_t &_index1, std::size_t &_index2, const Eigen::Vector2d &_p, const SupportPolygon &_support) |
Same as closestPointOnSupportPolygon, but also fills in _index1 and _index2 with the indices of the line segment. | |
template<typename Derived > | |
Derived::PlainObject | AdTJac (const Eigen::Isometry3d &_T, const Eigen::MatrixBase< Derived > &_J) |
Adjoint mapping for dynamic size Jacobian. | |
template<typename Derived > | |
Derived::PlainObject | AdTJacFixed (const Eigen::Isometry3d &_T, const Eigen::MatrixBase< Derived > &_J) |
Adjoint mapping for fixed size Jacobian. | |
template<typename Derived > | |
Derived::PlainObject | AdRJac (const Eigen::Isometry3d &_T, const Eigen::MatrixBase< Derived > &_J) |
Change coordinate Frame of a Jacobian. | |
template<typename Derived > | |
Derived::PlainObject | AdRInvJac (const Eigen::Isometry3d &_T, const Eigen::MatrixBase< Derived > &_J) |
template<typename Derived > | |
Derived::PlainObject | adJac (const Eigen::Vector6d &_V, const Eigen::MatrixBase< Derived > &_J) |
template<typename Derived > | |
Derived::PlainObject | AdInvTJac (const Eigen::Isometry3d &_T, const Eigen::MatrixBase< Derived > &_J) |
Adjoint mapping for dynamic size Jacobian. | |
template<typename Derived > | |
Derived::PlainObject | AdInvTJacFixed (const Eigen::Isometry3d &_T, const Eigen::MatrixBase< Derived > &_J) |
Adjoint mapping for fixed size Jacobian. | |
double | wrapToPi (double angle) |
Compute the angle (in the range of -pi to +pi) which ignores any full rotations. | |
template<typename MatrixType , typename ReturnType > | |
void | extractNullSpace (const Eigen::JacobiSVD< MatrixType > &_SVD, ReturnType &_NS) |
template<typename MatrixType , typename ReturnType > | |
void | computeNullSpace (const MatrixType &_M, ReturnType &_NS) |
template<typename T > | |
constexpr T | toRadian (const T °ree) |
template<typename T > | |
constexpr T | toDegree (const T &radian) |
const Eigen::Matrix2d | CR ((Eigen::Matrix2d()<< 0.0, -1.0, 1.0, 0.0).finished()) |
a cross b = (CR*a) dot b const Matd CR(2,2,0.0,-1.0,1.0,0.0); | |
int | delta (int _i, int _j) |
template<typename T > | |
constexpr int | sign (T x, std::false_type) |
template<typename T > | |
constexpr int | sign (T x, std::true_type) |
template<typename T > | |
constexpr int | sign (T x) |
double | sqr (double _x) |
double | Tsinc (double _theta) |
bool | isZero (double _theta) |
double | asinh (double _X) |
double | acosh (double _X) |
double | atanh (double _X) |
double | asech (double _X) |
double | acosech (double _X) |
double | acotanh (double _X) |
double | round (double _x) |
double | round2 (double _x) |
template<typename T > | |
T | clip (const T &val, const T &lower, const T &upper) |
template<typename DerivedA , typename DerivedB > | |
DerivedA::PlainObject | clip (const Eigen::MatrixBase< DerivedA > &val, const Eigen::MatrixBase< DerivedB > &lower, const Eigen::MatrixBase< DerivedB > &upper) |
bool | isEqual (double _x, double _y) |
bool | isInt (double _x) |
bool | isNan (double _v) |
Returns whether _v is a NaN (Not-A-Number) value. | |
bool | isNan (const Eigen::MatrixXd &_m) |
Returns whether _m is a NaN (Not-A-Number) matrix. | |
bool | isInf (double _v) |
Returns whether _v is an infinity value (either positive infinity or negative infinity). | |
bool | isInf (const Eigen::MatrixXd &_m) |
Returns whether _m is an infinity matrix (either positive infinity or negative infinity). | |
bool | isSymmetric (const Eigen::MatrixXd &_m, double _tol=1e-6) |
Returns whether _m is symmetric or not. | |
unsigned | seedRand () |
double | random (double _min, double _max) |
template<int N> | |
Eigen::Matrix< double, N, 1 > | randomVector (double _min, double _max) |
template<int N> | |
Eigen::Matrix< double, N, 1 > | randomVector (double _limit) |
Eigen::VectorXd | randomVectorXd (std::size_t size, double min, double max) |
Eigen::VectorXd | randomVectorXd (std::size_t size, double limit) |
using dart::math::AngularJacobian = typedef Eigen::Matrix<double, 3, Eigen::Dynamic> |
using dart::math::constantsd = typedef constants<double> |
using dart::math::constantsf = typedef constants<float> |
using dart::math::Inertia = typedef Eigen::Matrix6d |
using dart::math::Jacobian = typedef Eigen::Matrix<double, 6, Eigen::Dynamic> |
using dart::math::LinearJacobian = typedef Eigen::Matrix<double, 3, Eigen::Dynamic> |
using dart::math::NullSpace = typedef RealVectorSpace<0u> |
using dart::math::R1Space = typedef RealVectorSpace<1u> |
using dart::math::R2Space = typedef RealVectorSpace<2u> |
using dart::math::R3Space = typedef RealVectorSpace<3u> |
typedef std::vector<Eigen::Vector3d> dart::math::SupportGeometry |
typedef common::aligned_vector<Eigen::Vector2d> dart::math::SupportPolygon |
enum dart::math::AxisType |
Intersection_t is returned by the computeIntersection() function to indicate whether there was a valid intersection between the two line segments.
Enumerator | |
---|---|
INTERSECTING | An intersection was found. |
PARALLEL | The line segments are parallel. |
BEYOND_ENDPOINTS | There is no intersection because the end points do not expand far enough. |
|
inline |
|
inline |
|
inline |
Eigen::Vector6d dart::math::ad | ( | const Eigen::Vector6d & | _X, |
const Eigen::Vector6d & | _Y | ||
) |
adjoint mapping
Eigen::Vector6d dart::math::AdInvRLinear | ( | const Eigen::Isometry3d & | _T, |
const Eigen::Vector3d & | _v | ||
) |
Fast version of Ad(Inv([R 0; 0 1]), se3(0, v))
Eigen::Vector6d dart::math::AdInvT | ( | const Eigen::Isometry3d & | _T, |
const Eigen::Vector6d & | _V | ||
) |
fast version of Ad(Inv(T), V)
Derived::PlainObject dart::math::AdInvTJac | ( | const Eigen::Isometry3d & | _T, |
const Eigen::MatrixBase< Derived > & | _J | ||
) |
Adjoint mapping for dynamic size Jacobian.
Derived::PlainObject dart::math::AdInvTJacFixed | ( | const Eigen::Isometry3d & | _T, |
const Eigen::MatrixBase< Derived > & | _J | ||
) |
Adjoint mapping for fixed size Jacobian.
Derived::PlainObject dart::math::adJac | ( | const Eigen::Vector6d & | _V, |
const Eigen::MatrixBase< Derived > & | _J | ||
) |
Eigen::Vector6d dart::math::AdR | ( | const Eigen::Isometry3d & | _T, |
const Eigen::Vector6d & | _V | ||
) |
Fast version of Ad([R 0; 0 1], V)
Derived::PlainObject dart::math::AdRInvJac | ( | const Eigen::Isometry3d & | _T, |
const Eigen::MatrixBase< Derived > & | _J | ||
) |
Derived::PlainObject dart::math::AdRJac | ( | const Eigen::Isometry3d & | _T, |
const Eigen::MatrixBase< Derived > & | _J | ||
) |
Change coordinate Frame of a Jacobian.
Eigen::Vector6d dart::math::AdT | ( | const Eigen::Isometry3d & | _T, |
const Eigen::Vector6d & | _V | ||
) |
Rectify the rotation part so as that it satifies the orthogonality condition.
It is one step of \(R_{i_1}=1/2(R_i + R_i^{-T})\). Hence by calling this function iterativley, you can make the rotation part closer to SO(3).
reparameterize such as ||s'|| < M_PI and Exp(s) == Epx(s')
adjoint mapping
Eigen::Vector6d dart::math::AdTAngular | ( | const Eigen::Isometry3d & | _T, |
const Eigen::Vector3d & | _w | ||
) |
fast version of Ad(T, se3(w, 0))
Derived::PlainObject dart::math::AdTJac | ( | const Eigen::Isometry3d & | _T, |
const Eigen::MatrixBase< Derived > & | _J | ||
) |
Adjoint mapping for dynamic size Jacobian.
Derived::PlainObject dart::math::AdTJacFixed | ( | const Eigen::Isometry3d & | _T, |
const Eigen::MatrixBase< Derived > & | _J | ||
) |
Adjoint mapping for fixed size Jacobian.
Eigen::Vector6d dart::math::AdTLinear | ( | const Eigen::Isometry3d & | _T, |
const Eigen::Vector3d & | _v | ||
) |
fast version of Ad(T, se3(0, v))
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
Eigen::Vector2d dart::math::computeCentroidOfHull | ( | const SupportPolygon & | _convexHull | ) |
Compute the centroid of a polygon, assuming the polygon is a convex hull.
Eigen::Vector2d dart::math::computeClosestPointOnLineSegment | ( | const Eigen::Vector2d & | _p, |
const Eigen::Vector2d & | _s1, | ||
const Eigen::Vector2d & | _s2 | ||
) |
Returns the point which is closest to _p that also lays on the line segment that goes from _s1 -> _s2.
Eigen::Vector2d dart::math::computeClosestPointOnSupportPolygon | ( | const Eigen::Vector2d & | _p, |
const SupportPolygon & | _support | ||
) |
Returns the point which is closest to _p that also lays on the edge of the support polygon.
Eigen::Vector2d dart::math::computeClosestPointOnSupportPolygon | ( | std::size_t & | _index1, |
std::size_t & | _index2, | ||
const Eigen::Vector2d & | _p, | ||
const SupportPolygon & | _support | ||
) |
Same as closestPointOnSupportPolygon, but also fills in _index1 and _index2 with the indices of the line segment.
SupportPolygon dart::math::computeConvexHull | ( | const SupportPolygon & | _points | ) |
Computes the convex hull of a set of 2D points.
SupportPolygon dart::math::computeConvexHull | ( | std::vector< std::size_t > & | _originalIndices, |
const SupportPolygon & | _points | ||
) |
Computes the convex hull of a set of 2D points and fills in _originalIndices with the original index of each entry in the returned SupportPolygon.
IntersectionResult dart::math::computeIntersection | ( | Eigen::Vector2d & | _intersectionPoint, |
const Eigen::Vector2d & | a1, | ||
const Eigen::Vector2d & | a2, | ||
const Eigen::Vector2d & | b1, | ||
const Eigen::Vector2d & | b2 | ||
) |
Compute the intersection between a line segment that goes from a1 -> a2 and a line segment that goes from b1 -> b2.
void dart::math::computeNullSpace | ( | const MatrixType & | _M, |
ReturnType & | _NS | ||
) |
Eigen::Matrix3d dart::math::computeRotation | ( | const Eigen::Vector3d & | axis, |
AxisType | axisType = AxisType::AXIS_X |
||
) |
Compute a rotation matrix from a vector.
One axis of the rotated coordinates by the rotation matrix matches the input axis where the axis is specified by axisType.
SupportPolygon dart::math::computeSupportPolgyon | ( | const SupportGeometry & | _geometry, |
const Eigen::Vector3d & | _axis1 = Eigen::Vector3d::UnitX() , |
||
const Eigen::Vector3d & | _axis2 = Eigen::Vector3d::UnitY() |
||
) |
Project the support geometry points onto a plane with the given axes and then compute their convex hull, which will take the form of a polgyon.
_axis1 and _axis2 must both have unit length for this function to work correctly.
SupportPolygon dart::math::computeSupportPolgyon | ( | std::vector< std::size_t > & | _originalIndices, |
const SupportGeometry & | _geometry, | ||
const Eigen::Vector3d & | _axis1, | ||
const Eigen::Vector3d & | _axis2 | ||
) |
Same as computeSupportPolgyon, except you can pass in a std::vector<std::size_t> which will have the same size as the returned SupportPolygon, and each entry will contain the original index of each point in the SupportPolygon.
Eigen::Isometry3d dart::math::computeTransform | ( | const Eigen::Vector3d & | axis, |
const Eigen::Vector3d & | translation, | ||
AxisType | axisType = AxisType::AXIS_X |
||
) |
Compute a transform from a vector and a position.
The rotation of the result transform is computed by computeRotationMatrix(), and the translation is just the input translation.
const Eigen::Matrix2d dart::math::CR | ( | (Eigen::Matrix2d()<< 0.0, -1.0, 1.0, 0.0).finished() | ) |
a cross b = (CR*a) dot b const Matd CR(2,2,0.0,-1.0,1.0,0.0);
double dart::math::cross | ( | const Eigen::Vector2d & | _v1, |
const Eigen::Vector2d & | _v2 | ||
) |
Compute a 2D cross product.
Eigen::Vector6d dart::math::dad | ( | const Eigen::Vector6d & | _s, |
const Eigen::Vector6d & | _t | ||
) |
fast version of ad(se3(Eigen_Vec3(0), v), S)
fast version of ad(se3(w, 0), se3(v, 0)) -> check
dual adjoint mapping
Eigen::Vector6d dart::math::dAdInvR | ( | const Eigen::Isometry3d & | _T, |
const Eigen::Vector6d & | _F | ||
) |
fast version of dAd(Inv([R 0; 0 1]), F)
Eigen::Vector6d dart::math::dAdInvT | ( | const Eigen::Isometry3d & | _T, |
const Eigen::Vector6d & | _F | ||
) |
fast version of dAd(Inv(T), F)
Eigen::Vector6d dart::math::dAdT | ( | const Eigen::Isometry3d & | _T, |
const Eigen::Vector6d & | _F | ||
) |
dual adjoint mapping
|
inline |
Eigen::Matrix3d dart::math::eulerXYXToMatrix | ( | const Eigen::Vector3d & | _angle | ) |
Given Euler XYX angles, return a 3x3 rotation matrix, which is equivalent to RotX(angle(0)) * RotY(angle(1)) * RotX(angle(2)).
Eigen::Matrix3d dart::math::eulerXYZToMatrix | ( | const Eigen::Vector3d & | _angle | ) |
Given EulerXYZ angles, return a 3x3 rotation matrix, which is equivalent to RotX(angle(0)) * RotY(angle(1)) * RotZ(angle(2)).
Eigen::Matrix3d dart::math::eulerXZXToMatrix | ( | const Eigen::Vector3d & | _angle | ) |
Given EulerXZX angles, return a 3x3 rotation matrix, which is equivalent to RotX(angle(0)) * RotZ(angle(1)) * RotX(angle(2)).
Eigen::Matrix3d dart::math::eulerXZYToMatrix | ( | const Eigen::Vector3d & | _angle | ) |
Given EulerXZY angles, return a 3x3 rotation matrix, which is equivalent to RotX(angle(0)) * RotZ(angle(1)) * RotY(angle(2)).
Eigen::Matrix3d dart::math::eulerYXYToMatrix | ( | const Eigen::Vector3d & | _angle | ) |
Given EulerYXY angles, return a 3x3 rotation matrix, which is equivalent to RotY(angle(0)) * RotX(angle(1)) * RotY(angle(2)).
Eigen::Matrix3d dart::math::eulerYXZToMatrix | ( | const Eigen::Vector3d & | _angle | ) |
Given EulerYXZ angles, return a 3x3 rotation matrix, which is equivalent to RotY(angle(0)) * RotX(angle(1)) * RotZ(angle(2)).
Eigen::Matrix3d dart::math::eulerYZXToMatrix | ( | const Eigen::Vector3d & | _angle | ) |
Given EulerYZX angles, return a 3x3 rotation matrix, which is equivalent to RotY(angle(0)) * RotZ(angle(1)) * RotX(angle(2)).
Eigen::Matrix3d dart::math::eulerYZYToMatrix | ( | const Eigen::Vector3d & | _angle | ) |
Given EulerYZY angles, return a 3x3 rotation matrix, which is equivalent to RotY(angle(0)) * RotZ(angle(1)) * RotY(angle(2)).
Eigen::Matrix3d dart::math::eulerZXYToMatrix | ( | const Eigen::Vector3d & | _angle | ) |
Given EulerZXY angles, return a 3x3 rotation matrix, which is equivalent to RotZ(angle(0)) * RotX(angle(1)) * RotY(angle(2)).
Eigen::Matrix3d dart::math::eulerZXZToMatrix | ( | const Eigen::Vector3d & | _angle | ) |
Given EulerZXZ angles, return a 3x3 rotation matrix, which is equivalent to RotZ(angle(0)) * RotX(angle(1)) * RotZ(angle(2)).
Eigen::Matrix3d dart::math::eulerZYXToMatrix | ( | const Eigen::Vector3d & | _angle | ) |
Given EulerZYX angles, return a 3x3 rotation matrix, which is equivalent to RotZ(angle(0)) * RotY(angle(1)) * RotX(angle(2)).
singularity : angle[1] = -+ 0.5*PI
Eigen::Matrix3d dart::math::eulerZYZToMatrix | ( | const Eigen::Vector3d & | _angle | ) |
Given EulerZYZ angles, return a 3x3 rotation matrix, which is equivalent to RotZ(angle(0)) * RotY(angle(1)) * RotZ(angle(2)).
singularity : angle[1] = 0, PI
Eigen::Isometry3d dart::math::expAngular | ( | const Eigen::Vector3d & | _s | ) |
fast version of Exp(se3(s, 0))
Eigen::Isometry3d dart::math::expMap | ( | const Eigen::Vector6d & | _S | ) |
Exponential mapping.
Eigen::Matrix3d dart::math::expMapJac | ( | const Eigen::Vector3d & | _q | ) |
Computes the Jacobian of the expmap.
Eigen::Matrix3d dart::math::expMapJacDeriv | ( | const Eigen::Vector3d & | _q, |
int | _qi | ||
) |
computes the derivative of the Jacobian of the expmap wrt to _qi indexed dof; _qi \( \in \) {0,1,2}
Eigen::Matrix3d dart::math::expMapJacDot | ( | const Eigen::Vector3d & | _q, |
const Eigen::Vector3d & | _qdot | ||
) |
Computes the time derivative of the expmap Jacobian.
Eigen::Matrix3d dart::math::expMapRot | ( | const Eigen::Vector3d & | _q | ) |
Computes the Rotation matrix from a given expmap vector.
Eigen::Quaterniond dart::math::expToQuat | ( | const Eigen::Vector3d & | _v | ) |
void dart::math::extractNullSpace | ( | const Eigen::JacobiSVD< MatrixType > & | _SVD, |
ReturnType & | _NS | ||
) |
Eigen::Vector3d dart::math::fromSkewSymmetric | ( | const Eigen::Matrix3d & | _m | ) |
Eigen::Matrix6d dart::math::getAdTMatrix | ( | const Eigen::Isometry3d & | T | ) |
Get linear transformation matrix of Adjoint mapping.
Eigen::Isometry3d dart::math::getFrameOriginAxisZ | ( | const Eigen::Vector3d & | _origin, |
const Eigen::Vector3d & | _axisZ | ||
) |
Generate frame given origin and z-axis.
SpaceT::Point dart::math::integratePosition | ( | const typename SpaceT::Point & | pos, |
const typename SpaceT::Vector & | vel, | ||
double | dt | ||
) |
SpaceT::Vector dart::math::integrateVelocity | ( | const typename SpaceT::Vector & | vel, |
const typename SpaceT::Vector & | acc, | ||
double | dt | ||
) |
SpaceT::Matrix dart::math::inverse | ( | const typename SpaceT::Matrix & | mat | ) |
|
inline |
|
inline |
Returns whether _m is an infinity matrix (either positive infinity or negative infinity).
|
inline |
Returns whether _v is an infinity value (either positive infinity or negative infinity).
bool dart::math::isInsideSupportPolygon | ( | const Eigen::Vector2d & | _p, |
const SupportPolygon & | _support, | ||
bool | _includeEdge | ||
) |
Returns true if the point _p is inside the support polygon.
|
inline |
|
static |
|
inline |
Returns whether _m is a NaN (Not-A-Number) matrix.
|
inline |
Returns whether _v is a NaN (Not-A-Number) value.
|
inline |
Returns whether _m is symmetric or not.
|
inline |
Eigen::Vector6d dart::math::logMap | ( | const Eigen::Isometry3d & | _T | ) |
Log mapping.
Eigen::Vector3d dart::math::logMap | ( | const Eigen::Matrix3d & | _R | ) |
Log mapping.
Eigen::Matrix3d dart::math::makeSkewSymmetric | ( | const Eigen::Vector3d & | _v | ) |
Eigen::Vector3d dart::math::matrixToEulerXYX | ( | const Eigen::Matrix3d & | _R | ) |
get the Euler XYX angle from R
Eigen::Vector3d dart::math::matrixToEulerXYZ | ( | const Eigen::Matrix3d & | _R | ) |
get the Euler XYZ angle from R
Eigen::Vector3d dart::math::matrixToEulerXZY | ( | const Eigen::Matrix3d & | _R | ) |
get the Euler XZY angle from R
Eigen::Vector3d dart::math::matrixToEulerYXZ | ( | const Eigen::Matrix3d & | _R | ) |
get the Euler YXZ angle from R
Eigen::Vector3d dart::math::matrixToEulerYZX | ( | const Eigen::Matrix3d & | _R | ) |
get the Euler YZX angle from R
Eigen::Vector3d dart::math::matrixToEulerZXY | ( | const Eigen::Matrix3d & | _R | ) |
get the Euler ZXY angle from R
Eigen::Vector3d dart::math::matrixToEulerZYX | ( | const Eigen::Matrix3d & | _R | ) |
get the Euler ZYX angle from R
Eigen::Matrix3d dart::math::parallelAxisTheorem | ( | const Eigen::Matrix3d & | _original, |
const Eigen::Vector3d & | _comShift, | ||
double | _mass | ||
) |
Use the Parallel Axis Theorem to compute the moment of inertia of a body whose center of mass has been shifted from the origin.
Eigen::Matrix3d dart::math::quatDeriv | ( | const Eigen::Quaterniond & | _q, |
int | _el | ||
) |
Eigen::Matrix3d dart::math::quatSecondDeriv | ( | const Eigen::Quaterniond & | , |
int | _el1, | ||
int | _el2 | ||
) |
Eigen::Vector3d dart::math::quatToExp | ( | const Eigen::Quaterniond & | _q | ) |
|
inline |
Eigen::Matrix< double, N, 1 > dart::math::randomVector | ( | double | _limit | ) |
Eigen::Matrix< double, N, 1 > dart::math::randomVector | ( | double | _min, |
double | _max | ||
) |
|
inline |
|
inline |
Eigen::Vector3d dart::math::rotatePoint | ( | const Eigen::Quaterniond & | _q, |
const Eigen::Vector3d & | _pt | ||
) |
Eigen::Vector3d dart::math::rotatePoint | ( | const Eigen::Quaterniond & | _q, |
double | _x, | ||
double | _y, | ||
double | _z | ||
) |
|
inline |
|
inline |
|
inline |
|
inlineconstexpr |
|
inlineconstexpr |
|
inlineconstexpr |
|
inline |
|
constexpr |
SpaceT::EuclideanPoint dart::math::toEuclideanPoint | ( | const typename SpaceT::Point & | point | ) |
SpaceT::Point dart::math::toManifoldPoint | ( | const typename SpaceT::EuclideanPoint & | point | ) |
|
constexpr |
|
inline |
bool dart::math::verifyRotation | ( | const Eigen::Matrix3d & | _T | ) |
Check if determinant of _R is equat to 1 and all the elements are not NaN values.
bool dart::math::verifyTransform | ( | const Eigen::Isometry3d & | _T | ) |
Check if determinant of the rotational part of _T is equat to 1 and all the elements are not NaN values.
|
inline |
Compute the angle (in the range of -pi to +pi) which ignores any full rotations.